Posted in Ֆիզիկա 9

Ոսպնյակի բնութագրերը: Օպտիկական ուժ

Լույսի անդրադարձման և բեկման երևույթները օգտագործվում են լուսային ճառագայթների տարածման ուղղությունը փոխելու նպատակով՝ տարբեր օպտիկական սարքերում, ինչպիսիք են մանրադիտակըաստղադիտակըխոշորացույցըլուսանկարչական ապարատը և այլն: 

post-34240-1212655712.jpg

 Այդ բոլոր սարքերում լուսափնջի կառավարումը իրականացվում է նրանց կառուցվածքի ամենակարևոր մասի՝ ոսպնյակի միջոցով:  

Convex and concave Lenses - Physics - Eureka.in (1)_1.gif

Ոսպնյակ է կոչվում թափանցիկ, սովորաբար ապակե մարմինը, որը երկու կողմից սահմանափակված է գնդային մակերևույթներով: 

Dnxva.jpg

Ինչպես երևում է նկարից, ոսպնյակը սահմանափակված է R1, R2 շառավիղներով և C1, C2 կենտրոններով գնդային մակերևույթներով: Ըստ իրենց ձևի՝ ոսպնյակները լինում են ուռուցիկ և գոգավոր:Ուռուցիկ են այն ոսպնյակները, որոնց միջին մասն ավելի հաստ է, քան եզրերը:Լինում են երկուռուցիկ (ա), հարթուռուցիկ (բ), գոգավոր-ուռուցիկ (գ) ոսպնյակներ: 

123456789.png

Գոգավոր են այն ոսպնյակները, որոնց միջին մասն ավերի բարակ է, քան եզրերը:Նրանք նույնպես լինում են 3 տեսակի. երկգոգավոր (ա),հարթ-գոգավոր (բ), գոգավոր-ուռուցիկ (գ): 

123456.png

 Ըստ իրենց չափերի՝ ոսպնյակները լինում են բարակ և ոչ բարակ:Բարակ են այն ոսպնյակները, որոնց միջին մասը (հաստությունը) զգալիորեն փոքր է նրանց սահմանափակող գնդային մակերևույթների շառավիղներից՝ d≪R1,R2Այստեղ d-ն ոսպնյակի հաստությունն է, R1,R2-ը՝ գնդոլորտների շառավիղները: Բարակ ոսպնյակների պայմանական նշաններն են՝ 

789.png

 Կառուցման խնդիրներում հիմնականում ոսպնյակները ներկայացվում են այս պայմանական նշաններով: Ոսպնյակի բնութագրերն են.1. Գլխավոր օպտիկական առանցքըՈսպնյակը պարփակող գնդային մակերևույթների C1,C2 կենտրոնները միացնող ուղիղը կոչվում է գլխավոր օպտիկական առանցք:Այդ առանցքով ուղղված լուսային ճառագայթները ոսպնյակով անցնելիս չեն բեկվում և իրենց ուղղությունը չեն փոխում: 2. Օպտիկական կենտրոնըԲարակ ոսպնյակի և գլխավոր օպտիկական առանցքի հատման Օ կետը կոչվում է ոսպնյակի օպտիկական կենտրոն:Ոսպնյակի օպտիկական կենտրոնով անցնող ճառագայթը իր ուղղությունը չի փոխում: 

тл-6.jpg

3. Օպտիկական առանցքըՈսպնյակի Օ օպտիկական կենտրոնով անցնող ցանկացած ուղիղ կոչվում է ոսպնյակի օպտիկական առանցք:Ոսպնյակն ունի 1 գլխավոր և բազմաթիվ երկրորդային օպտիկական առանցքներ: Եթե ուռուցիկ ոսպնյակի նյութի բեկման ցուցիչն ավելի մեծ է միջավայրի բեկման ցուցիչից, օրինակ եթե միջավայրն օդն է, իսկ ոսպնյակը ապակի, ապա ուռուցիկ ոսպնյակը հավաքող է:Ոսպնյակը հավաքող է, եթե նրա վրա ընկնող ճառագայթների փունջը ոսպնյակով անցնելուց հետո հավաքվում է մեկ կետում:

e53_1 - Copy.png

 Նույն պայմանի դեպքում գոգավոր ոսպնյակը ցրող է:Ոսպնյակը ցրող է, եթե նրա վրա ընկնող ճառագայթների փունջը ոսպնյակով անցնելուց հետո ցրվում է բոլոր ուղղություններով:

e53_1 - Copy - Copy.png

4. Գլխավոր կիզակետը  Ոսպնյակի կարևոր բնութագրերից է նրա կիզակետը:Fկետը, որում, ոսպնյակում բեկվելուց հետո, հավաքվում են գլխավոր օպտիկական առանցքին զուգահեռ ճառագայթները, եթե ոսպնյակը հավաքող է, կամ ճառագայթների մտովի շարունակությունները, եթե ոսպնյակը ցրող է, կոչվում է ոսպնյակի գլխավոր կիզակետ:

Picture42.png

 Ցանկացած ոսպնյակ ունի երկու գլխավոր կիզակետ. ամեն կողմից մեկական, ոսպնյակի գլխավոր օպտիկական առանցքի վրա: ՈւշադրությունՀավաքող ոսպնյակի կիզակետերը իրական են, իսկ ցրողներինը՝ կեղծ:

 5. Կիզակետային հեռավորությունՈսպնյակի օպտիկական կենտրոնից` Oմինչև գլխավոր կիզակետ` F ընկած հեռավորությունը կոչվում է ոսպնյակի կիզակետային հեռավորություն:Կիզակետային հեռավորությունը նշանակվում է OF կամ F, և չափվում է մետրով: 

1.png

6. Կիզակետային հարթություն

Ոսպնյակի գլխավոր կիզակետով անցնող, գլխավոր օպտիկական առանցքին ուղղահայաց հարթությունը կոչվում է կիզակետային հարթություն, իսկ ուղղահայաց ուղիղը՝ կիզակետային ուղիղ:Եթե ոսպնյակը հավաքող է, ապա ճառագայթների կամայական զուգահեռ փունջ ոսպնյակով անցնելուց հետո հավաքվում է այդ ճառագայթներին զուգահեռ օպտիկական առանցքի և կիզակետային ուղղի հատման կետում: Եթե ոսպնյակը ցրող է, ապա նրանում բեկվելուց հետո, ճառագայթներին զուգահեռ օպտիկական առանցքի և կիզակետային ուղղի հատման կետում կհավաքվեն այդ ճառագայթների շարունակությունները: 

image_lab_rays_005.gif
image_lab_rays_006-iloveimg-cropped.gif

7. Օպտիկական ուժ

Կիզակետային հեռավորության հակադարձ մեծությունը կոչվում է ոսպնյակի օպտիկական ուժ և նշանակվում է Dտառով: D=1/F Ինչքան փոքր է ոսպնյակի կիզակետային հեռավորությունը, այնքան ավելի մեծ է նրա օպտիկական ուժը, այսինքն ՝ այնքան ավելի ուժեղ է այն բեկում ճառագայթները:Հավաքող ոսպնյակի օպտիկական ուժը դրական է՝ D≻0, իսկ ցրող ոսպնյակի օպտիկական ուժը բացասական է՝D≺0:Օպտիկական ուժի չափման միավորը 1 դիօպտրիան է: 1դպտր=1մ−1

1 դպտր-ն1մ կիզակետային հեռավորությամբ ոսպնյակի օպտիկական ուժն է:Օպտիկական բազմաթիվ սարքեր կազմված են մի քանի ոսպնյակից:Իրար հպված մի քանի ոսպնյակներով համակարգի օպտիկական ուժը հավասար է այդ համակարգի ոսպնյակների օպտիկական ուժերի գումարին:

D=D1+D2, որտեղ D-ն համակարգի օպտիկական ուժն է, իսկ D1-ը և D2-ը առանձին ոսպնյակների օպտիկական ուժերն են: 

8. Խոշորացում Ոսպնյակի միջոցով ստացվող առարկայի պատկերը կարող է առարկայից ավելի մեծ կամ փոքր չափեր ունենալ: 

Ոսպնյակի խոշորացումը ցույց է տալիս, թե առարկայի պատկերի գծային չափերը առարկայի  չափերի որ մասն են կազմում:Խոշորացումը նշանակում են Гտառով:Առարկայի պատկերի և առարկայի գծային չափերի հարաբերությունը կոչվում է ոսպնյակի խոշորացում:

Γ=H/h, որտեղ H-ը առարկայի պատկերի բարձրությունն է, իսկ h-ը՝ առարկայինը:

Տնային առաջադրանք՝ Էջ 109 (1-8 հարցերին)

Posted in Ֆիզիկա 9

Լույսի բեկման օրենք

Եթե միջավայրը անհամասեռ է, ապա լույսը տարածվում է ոչ ուղղագիծ:Երկու  միջավայրերի բաժանման սահմանին լուսային ճառագայթի էներգիան կարող է մասամբ կլանվել, մասամբ անդրադառնալ, իսկ եթե երկրորդ միջավայրը թափանցիկ է, նաև մասամբ անցնել այդ միջավայր՝ փոխելով տարածման ուղղությունը:Լույսի ճառագայթի ուղղության փոփոխությունը մի միջավայրից մյուսին անցնելիս, կոչվում է լույսի բեկում:

98GXxY-iloveimg-cropped-iloveimg-cropped.gif

Դիտարկենք երկու թափանցիկ միջավայրերի բաժանման սահմանին ընկնող AO ճառագայթի ընթացքը երկրորդ միջավայրում: Դա կարելի է իրականացնել օպտիկական սկավառակի միջոցով, որի կենտրոնում հայելու փոխարեն այս անգամ ամրացված է ապակուց, կամ այլ թափանցիկ նյութից պատրաստած կիսագլան: 

Fénytörés.jpg

 Ընկնող ճառագայթի՝ AO և անկման կետում երկրորդ միջավայրի (ապակու) մակերևույթին տարված MN նորմալի միջև կազմած անկյունը՝ ∠MOA-ն կոչվում է անկման անկյուն և նշանակվում α տառով:Երկրորդ միջավայր անցած, իր տարածման ուղղությունը փոխած OEճառագայթին անվանում են բեկված ճառագայթ:Բեկված ճառագայթի և նույն MNնորմալի միջև կազմած անկյունը ∠NOE-ն կոչվում է բեկման անկյուն և նշանակվում է β տառով:

image026 - Copy.png

 Փորձը ցույց է տալիս, որ եթե ընկնող AO ճառագայթը գնվում է սկավառակի հարթության վրա, ապա բեկված OEճառագայթը նույնպես կգտնվի նույն հարթության մեջ: Փորձ ցույց է տալիս նաև, որ երկրորդ միջավայրից (ապակուց) դուրս գալիս լուսային ճառագայթը այլևս չի բեկվում, քանի որ ընկնում է գնդաձև մակերևույթին ուղղահայաց: Մակերևույթին ուղղահայաց ընկնող ճառագայթը չի բեկվում:Կատարելով բազմաթիվ փորձեր և չափելով α անկման և β բեկման անկյունները, կարելի է համոզվել, որ այդ անկյունների սինուսների հարաբերությունը տվյալ երկու միջավայրերի համար հաստատուն մեծություն է: Այն կախված չէ անկման անկյունից և հավասար է այդ երկու միջավայրերում լույսի տարածման արագությունների հարաբերությանը: sinα/sinβ=V1/V2 (1) այտեղ V1-ը լույսի արագությունն է առաջին միջավայրում (օդում), իսկ V2-ը՝ երկրորդ միջավայրում (ապակու մեջ): Ընդհանրացնելով փորձնական արդյունքները կարելի է սահմանել լույսի բեկման օրենքըԸնկնող ճառագայթըբեկված ճառագայթը և անկման կետում երկու միջավայրերի բաժանման սահմանին տարված նորմալը գտնվում են նույն հարթության մեջ:Անկման անկյան սինուսի հարաբերությունը բեկման անկյան սինուսին հաստատուն մեծություն է տվյալ երկու միջացվայրերի համար: sinαsinβ=const  Լույսի բեկման օրենքը հայտնաբերել է հոլանդացի ֆիզիկոս Վիլեբրորդ Սնելիուսը (1580-1626 թթ.): 

snell.gif

 Օպտիկապես թափանցիկ միջավայրերը կարելի է բնութագրել ֆիզիկական մեծությամբ, որը կոչվում է բեկման ցուցիչՄիջավայրի բեկման ցուցիչ, կամ բացարձակ բեկման ցուցիչ կոչվում է վակումում և տվյալ միջավայրում լույսի տարածման արագությունների հարաբերությունըn=cvԱյստեղ n-ը տվյալ միջավայրի բեկման ցուցիչն է, c-ն լույսի արագությունն է վակումում, իսկ  v-ն` լույսի արագությունը տվյալ միջավայրում: Սահմանումից հետևում է, որ միջավայրի բեկման ցուցիչը ցույց է տալիս, թե լույսի տարածման արագությունը տվյալ միջավայրում քանի անգամ է փոքր տվյալ միջավայրում լույսի տարածման արագությունից:Քանի որ c-ն միշտ մեծ է v-ից, հետևաբար միջավայրի բեկման ցուցիչը միշտ 1-ից մեծ, անչափողական մեծություն է: Տարբեր օպտիկապես թափանցիկ միջավայրերի բեկման ցուցիչների արժեքները բերված են աղյուսակում: 

Screenshot_8.png

 Աղյուսակից երևում է, որ օդում լույսի բեկման ցուցիչը շատ քիչ է տարբերվում 1-ից և հաշվարկներում վերցվում է 1: Որքան մեծ է տվյալ միջավայրի բեկման ցուցիչը այնքան այն համարվում է օպտիկապես խիտ, որքան փոքր, այնքան օպտիկապես նոսր: Աղյուսակից երևում է, որ ամենամեծ բեկման ցուցիչը ունի ալմաստը, հետևաբար նա օպտիկապես ամենախիտն է: 

ElBzDg-iloveimg-cropped.gif

 Լույսի բեկման օրենքը կարելի է ներկայացնել նաև բեկման ցուցիչների միջոցով, հաշվի առնելով բեկման ցուցիչի սահմանումը, որից հետևում է՝ v1=cn1, իսկ v2=cn2 Տեղադրելով այս արտահատությանները (1) բանաձևի մեջ կստանանք՝ sinα/sinβ=n2/n1 (2) n=n2n1 մեծությանը անվանում են հարաբերական բեկման ցուցիչ, որն արդեն կարող է ընդունել ցանկացած արժեք: Եթե ճառագայթը օպտիկապես ավելի նոսր միջավայրից անցնում է ավելի խիտ միջավայր, օրինակ՝ օդից — ջուր, ապա քանի որ n2>n1, ուրեմն sinβ<sinα, որից հետևում է՝ β<α, ինչպես պատկերված է նկարում: 

photo.jpg

 Իսկ եթե ճառագայթը օպտիկապես խիտ միջավայրից է անցնում նոսր միջավայր, այսինքն n1>n2, օրինակ՝ ապակուց — օդ, ապա բեկման օրենքից հետևում է, որ sinα<sinβ: Այսինքն՝ α<β, այնպես ինչպես պատկերված է նկարում: 

12.png

 Լույսի բեկմամբ են բացատրվում բազմաթիվ օպտիկական երևույթներ. բերենք դրանցից մի քանիսը՝ 1. ջրամբարի խորությունը մեզ թվում է ավելի փոքր քան իրականում է,   

Screenshot_3.jpg

  2. ջրով լի բաժակի մեջ մտցված ձողիկը թվում է կոտրված, 

Screenshot_4.png

 3. հորիզոնի նկատմամբ Արեգակի և աստղերի դիրքը թվում է իրականից ավելի բարձր, իսկ Արեգակի չափերն ավելի մեծ, երբ այն հորիզոնին մոտ է: 

sun1b.jpg

 4. մթնոլորտի անհամասեռությամբ և նրանում լույսի բեկմամբ է պայմանավորված աստղերի առկայծումը և օդատեսիլի (միրաժ) առաջացումը: 

mirazh_v_pustyne.jpg
Posted in Ֆիզիկա 9

Լույսի անդրադարձման օրենքը

Լույսը ընկնելով մարդու աչքի մեջ առաջացնում է տեսողական զգացողություն, որի հետևանքով մենք տեսնում ենք լույսի աղբյուրը և բոլոր այն մարմիններն ու մակերևույթները, որոնք անդրադարձնում են իրենց վրա ընկնող լուսային ճառագայթները: Լավ անդրադարձնող մակերևույթ է հայելին: 

470x0_e3fc6d35c638655355aec576ef740eb6___jpg____4_d59d1a07.jpg

Այն կարող է անդրադարձնել լուսային էներգիայի մոտ 90%-ը:

Լույսի անդրադարձումը ենթարկվում է որոշակի օրենքի, որը հայտնագործել է Հին Հունաստանի գիտնական Էվկլիդեսը:

 Այս օրենքը սահմանելու համար հարմար է օգտվել օպտիկական սկավառակ կոչվող սարքից:

455288.jpg

Օպտիկական սկավառակում լույսի աղբյուր է ծառայում փոքրիկ լամպը, որը գտնվում է շարժական լուսարարի ներսում:

Լուսարարից դուրս եկող լույսի նեղ փունջը՝ AO լույսի ճառագայթը, տարածվում է սկավառակի մակերևույթին և նրա մասնիկների կողմից ցրվելով դառնում է տեսանելի:

21212121.png

Սկավառակի կենտրոնում տեղադրված հարթ հայելուց AO ճառագայթը անդրադառնում է և սկավառակի վրա առաջացնում OBանդրադարձած ճառագայթ:

Ստացված պատկերը վկայում է այն մասին, որ AO ճառագայթը, հայելու հարթությանը տարված OC ուղղահայացը և OB անդրադարձած ճառագայթը գտնվում են միևնույն՝անկման հարթության մեջ:

  Ընկնող ճառագայթի և անդրադարձնող մակերևույթին տարված ուղղահայացի միջև կազմած անկյունը կոչվում է անկման անկյուն՝ α (ալֆա):

Անդրադարձած ճառագայթի և անդրադարձնող մակերևույթին տարված ուղղահայացի միջև կազմած անկյունը կոչվում է անդրադարձման անկյուն՝  ՝γ (գամմա):Տեղափոխելով լույսի աղբյուրը սկավառակի եզրով կարող ենք համոզվել.

P18Wpy.gif

Անդրադարձած ճառագայթն ընկած է անկման հարթության վրա, ընդ որում անկման անկյունը հավասար է անդրադարձման անկյանը՝ α=γ : 

Փորձնական տվյալների վրա հիմնված այս օրենքը կոչվում է անդրադարձման օրենք:

Նկատենք նաև, որ եթե փորձում լույսի ճառագայթը ընկնի անդրադարձնող մակերևույթի վրա BO ուղղությամբ, ապա անդրադառնալուց հետո այն կանցնի OA ուղղությամբ: Այս հատկությունը կոչվում է լուսային ճառագայթների շրջելիություն:

Հարթ հայելի:

Առօրյա կյանքում մեծ կիրառություն ունեն հարթ, անդրադարձնող մակերևույթները, որոնց անվանում ենք հարթ հայելի:

Երբ առարկան գտնվում է հայելու առաջ, ապա թվում է, թե հայելու հետևում նույնպիսի առարկա է գտնվում: Այն ինչ մենք տեսնում ենք հայելում, կոչվում է առարկայի պատկեր

Зеркало.gif

Հասկանալու համար, թե ինչպես է առաջանում առարկայի պատկերը հարթ հայելիում, հետևենք հայելու դիմաց տեղադրված S լույսի կետային աղբյուրից դուրս եկող SO1 և SO2 ճառագայթներին: Այդ ճառագայթները հասնելով հարթ հայելուն՝ նրանից կանդրադառնան համաձայն անդրադարձման օրենքի, այսինքն նույն անկյան տակ, ինչ անկյան տակ որ ընկնում է հարթ հայելու վրա:

229ea979a4f54e3c5c791d545bfbae083f925855.gif

Անդրադարձումից հետո ճառագայթները տարամիտող փնջով ընկնում են դիտողի աչքի մեջ: Դիտորդը լույսի աղբյուրը կտեսնի այն կետում, որ կետում կհատվեն այդ տարամիտող ճառագայթների մտովի շարունակությունները (կետագծերով նշված), այսինքն S1 կետում:

Այդ կետն էլ՝ S1-ը, հենց S կետային աղբյուրի պատկերն է հարթ հայելում:

S1 պատկերը կոչվում է կեղծ, քանի որ ստացվում է ոչ թե լույսի իրական ճառագայթների այլ դրանց երևակայական շարունակությունների հատումից:

Այսպիսով, հարթ հայելում պատկերը միշտ կեղծ է լինում: 

Օգտվելով եռանկյունների հավասարության հայտանիշներից կարելի է ապացուցել, որ S1O=SO

Սա նշանակում է. հարթ հայելում պատկերն նրանից գտնվում է նույն հեռավորության վրա, ինչ հեռավորության վրա նրա դիմաց գտնվում է լույսի աղբյուր:

Կատարելով փորձ հարթ թափանցիք ապակու, վառվող և հանգած մոմերով: Փորձով կարելի է համոզվել, որ վառվող մոմի պատկերը այդ՝ մասամբ անդրադարձնող ապակու մյուս կողմում կեղծ է, քանի որ, եթե պատկերի երևացող բոցի վրա թղթի կտոր պահենք այն չի այրվի:

Screenshot_2.png
Screenshot_3.png

Կատարելով համապատասխան չափումներ քանոնով կարելի է համոզվել, որ վառվող մոմը և նրա կեղծ պատկերը ապակուց գտնվում են նույն հեռավորության վրա:

Փորձը ցույց է տալիս նաև, որ մոմի պատկերի բարձրությունը հավասար է իրական մոմի բարձրությանը;

Արդյունքները ամփոփելով կարելի ասել, որ հարթ հայելում առարկաների պատկերները միշտ լինում են.

Ուշադրություն

1. կեղծ

2. ուղիղ (չշրջված)

3. չափերով հավասար առարկայի

4. հայելուց նույն հեռավորության վրա, ինչ հեռավորության վրա նրա դիմաց տեղադրված  է առարկան:

Այլ կերպ ասած՝ հարթ հայելում առարկայի պատկերը համաչափ է առարկային հայլելու հարթության նկատմամբ:

53842f20_c437_0132_56cf_12313c0dade2.png

Սակայն հայելում առարկայի պատկերի և առարկայի միջև կան նկատվող տարբերություններ: Հայելային անդրադարձումը միշտ աջը ձախ է փոխում և հակառակը:

Այդ պատճառով հնարավոր չէ հայելում կարդալ տեքստերը:

lsnPrxhbnJQ.jpg

Հայելին ունի մեծ կիրառություններ կենցաղում, տարբեր օպտիկական սարքերում: Այդպիսի հայտնի սարքերից է պերիսկոպը, որը կիրառվում է տանկերից, սուզանավերից, խրամատներից, տարբեր թաքստոցներից նայելու համար: 

image006.png
Posted in Ֆիզիկա 9

Լույսի տարածումը համասեռ միջավայրում

Լույսը շատ կարևոր դեր է կատարում մարդու կյանքում:

Լույսի շնորհիվ մենք կարողանում ենք ճանաչել մեզ շրջապատող աշխարհը:

Լույսն է, որ Արեգակից Երկիր հասնելով մեր մոլորակի վրա կյանքի գոյության համար անհրաժեշտ պայմանններ է ստեղծում:

luchi_sveta_10.jpg

Իսկ ի՞նչ է լույսը:

Լույսի բնույթի վերաբերյալ առաջին գիտական տեսությունը ստեղծել է Իսահակ Նյուտոնը 17-րդ դարում:

051112_1936_IsaacNewton1.jpg

Ըստ Նյուտոնի.

Լույսը կազմված է փոքրիկ մասնիկներից՝ կորպուսկուլներից, որոնք լուսատու մարմինը առաքում է բոլոր ուղղություններով՝ ճառագայթների երկայնքով:

1_1429683285364.JPG

Գրեթե միաժամանակ, հոլանդացի գիտնական Քրիստիան Հյուգենսը առաջարկել է լույսի ալիքային տեսությունը:

8224.jpg

Ըստ Հյուգենսի.

Լույսը առաձգական ալիք է՝ լույսի աղբյուրից հեռացող համակենտրոն գնդոլորտների տեսքով:

1_1429684219670.JPG

Վակումում լույսի տարածումը հերքեց լույսի՝ առաձգական ալիք լինելը: Սակայն 19-րդ դարի երկրորդ կեսին, էլեկտրամագնիսական ալիքների փորձնական ստացումը, լույսի և էլետրամագնիսական ալիքների արագության համընկնելը, թույլ տվեց Մաքսվելին և Հերցին իրենց աշխատություններում հաստատել լույսի ալիքային բնույթը և լույսը նույնացնել էլետրամագնիսական ալիքի հետ:

Լույս կամ տեսանելի ճառագայթում են անվանում 400−800ՏՀց (1ՏՀց=1012 Հց) հաճախության էլեկտրամագնիսական ալիքները, որոնք մարդու մոտ կարող են առաջացնել տեսողական զգայություններ:

Տարբեր հաճախությունների ճառագայթումները մարդու մոտ տարբեր գույների զգայություններ են առաջացնում՝ սկսած կարմիրից՝ 400−480 ՏՀց, մինչև մանուշակագույն՝ 670−800ՏՀց:

Visible-spectrum.jpeg

Հետագայում Ալբերտ Այնշտայնը՝ ֆոտոէֆեկտի երևույթը բացատրելիս, նորից անդրադարձավ լույսի մասնիկային բնույթին և ցույց տվեց, որ

ճառագայթելիս և կլանվելիս, լույսը իրենից ներկայացնում է լուսային մասնիկների՝ ֆոտոնների հոսք:

Այսպիսով լույսն ունի հատկությունների երկակիություն:

Սակայն անկախ այն բանից, թե ինչ բնույթ ունի լույսը՝ մասնիկների հոսք է, թե էլեկտրամագնիսական ալիք, այն ներկայացվում է որպես ճառագայթներ, որոնք սկսվում են լուսատու մարմնից և տարածվում բոլոր ուղղություններով՝ ցույց տալով լուսային էներգիայի տարածման ուղղությունը:

Տեսանելի տիրույթում ճառագայթող մարմնին անվանում են լույսի աղբյուր:

Եթե լույսի աղբյուրի չափերը շատ փոքր են մինչև լուսավորվող մարմին ընկած հեռավորության համեմատ, ապա այն անվանում են լույսի կետային աղբյուր

Լույսի աղբյուրները բաժանվում են նաև բնական և արհեստական աղբյուրների:

Լույսի բնական աղբյուրներն են՝ Արեգակը, աստղերը, կայծակը, լուսատիտիկը և այլն:

image005.png

Լույսի արհեստական աղբյուրներն են՝ ջերմային աղբյուրները (շիկացման լամպ, գազայրիչի բոց, մոմի լույս և այլն) և ոչ ջերմային աղբյուրները (ցերեկային լույսի լամպ, լուսադիոդ, լազեր, հեռուստացույցի կամ համակարգչի էկրան):

im1.1.jpg

Լույսի աղբյուր կարող են լինել ոչ միայն լուսատու մարմինները, այլև այն մարմինները, որոնք անրադարձնում են իրենց վրա ընկած լույսը բոլոր ուղղություններով, դարռնալով տեսանելի:

Այդպիսի աղբյուրներ են՝ Լուսինը, մոլորակները և մեր շուրջը գտնվող բոլոր տեսանելի առարկաները:

Լույսի տարածումը համասեռ միջավայրում:

Ֆիզիկայի այն բաժինը, որն ուսումնասիրում է լույսի հետ կապված երևույթները, կոչվում է օպտիկա:

Օպտիկայի այն բաժինը, որն ուսումնասիրում է լուսային ճառագայթների տարածման օրինաչափությունները՝ հաշվի չառնելոով նրանց ալիքային հատկությունները, կոչվում է երկրաչափական օպտիկա

Երկրաչափական օպտիկայի օրենքներից մի քանիսը հայտնագործվել է լույսի բնույթը պարզելուց շատ առաջ:

Այդպիսի օրենքներից է՝ լույսի ուղղագիծ տարածման օրենքը, որը ձևակերպել է հույն գիտնական Էվկլիդեսը՝ մ. թ. ա. երրորդ դարում:

euclid-3.jpg

Համասեռ, թափանցիկ միջավայրում լույսն ուղղագիծ է տարածվում:

Դրանում կարելի է համոզվել փորձերի օգնությամբ, որոնք հարմար է կատարել լազերային ցուցափայտի արձակած ճառագայթով: Այս կերպ կարող ենք տեսնել, որ ապակե անոթի մեջ լցված ջրում՝ համասեռ, թափանցիկ միջավայրում, լազերային ճառագայթը տարածվում է ուղիղ գծով:

maxresdefault (2).jpg

Լույսի ուղղագիծ տարածման հետևանք են հստակ ստվերները, որոնք ընկնում են անթափանց մարմիններից, երբ դրանք լուսավորվում են լույսի կետային աղբյուրից:

Shadows3.jpg

Օրինակ՝ եթե կետային լույսի աղբյուրի և էկրանի միջև անթափանց գունդ տեղադրենք, ապա էկրանի վրա մուգ շրջանի տեսքով ստվեր կհայտնվի:

Ստվերն այն տեղն է, որտեղ չի ընկնում լույսի աղբյուրի լույսը:

maxresdefault.jpg

Եթե լույսի կետային աղբյուրի փոխարեն օգտագործվի ավելի մեծ չափեր ունեցող աղբյուր՝ լամպ, ապա հստակ ստվերի փոխարեն լուսավորված ֆոնին կստանանք ստվեր և կիսաստվեր:

Դա ոչ միայն չի հակասում, այլ, ևս մեկ անգամ հաստատում է լույսի ուղղագիծ տարածման օրենքը:

62.png

Այն մասում, որտեղ լույս չի ընկնում լամպի և ոչ մի կետից, լիակատար ստվեր է, իսկ այն տիրույթում, որտեղ լույսը միայն որոշ կետերից է ընկնում՝ առաջանում է կիսաստվեր:

Հսկայական չափերի ստվեր և կիսաստվեր գոյանում են Արևի և Լուսնի խավարումների ժամանակ:

Արևի խավարումն առաջանում այն դեպքում, երբ Լուսինը՝ Երկրի շուրջը իր պտույտի ժամանակ, ամբողջովին կամ մասնակիորեն ծածկում է Արեգակը:

5b2e464aa65a02e9397cd1865eb2fb10.jpg

Իսկ, երբ Լուսինն է հայտնվում Երկրագնդի առաջացրած ստվերի կոնի մեջ, ապա տեղի ունենում Լուսնի խավարում:

Lusin.png

Լուսնի խավարումների ուսումնասիրությունը հնարավորություն է տվել Արիստոտելին՝ մ. թ. ա. չորրորդ դարում, եզրակացնել, որ Երկիրը գնդաձև է, ինչի վկայությունը Լուսնի վրա Երկրագնդի ստվերի շրջանաձև լինելն է: